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Abstract Various land surface treatments in a suite of subseasonal-to-seasonal forecasts are applied to
diagnose the degree to which potential predictability from the land surface is harvested, where
breakdowns occur in the process chains that link land surface states to atmospheric phenomena, and the role
played by memory in the climate system. Version 2 of the Coupled Forecast System (CFSv2) is used for boreal
summer simulations spanning 28 years. Four types of retrospective forecasts are produced: those where
land surface initial states are from the same date and year as the initial atmosphere and ocean states;
ensembles where initial land states come from different years than the atmosphere and ocean; simulations
where soil moisture is specified from an observationally constrained analysis; and simulations where an
alternative triggering mechanism for convection is employed. The specified soil moisture allows estimation
of an upper bound for land-driven predictability and prediction skill in boreal summer. Realistic land
initialization represents the best possible case with this model in forecast mode, while the simulations with
initial land states from different years isolate the impact of atmosphere and ocean initialization on forecasts.
Harvested predictability is calculated, and its relationship to memory of initial anomalies is estimated. The
pathway of land surface information through the energy and water cycles to the atmosphere, and ultimately
its effects on precipitation, is traced, showing a robust propagation of useful signal through land surface
fluxes, near-surface meteorological states, and boundary layer properties, but largely disappearing at
precipitation, implying problems with the convective parameterization.

Plain Language Summary The performance of the National Weather Service’s operational climate
forecast model is examined to see how the land surface, namely, moisture in the soil, affects the skill of
forecasts. We estimate the potential skill derived from the best possible initialization and prediction of land
surface states and how much of that potential skill can be realized by the current version of the forecast
model. Additionally, we trace the signal of information in the model from the land surface into the
atmosphere and find that while good soil moisture information greatly extends the duration of useful
temperature and humidity forecasts, much information appears to be lost at the point in the model where
clouds and precipitation are simulated. This result suggests that themodel could be improved to make better
use of land surface data to produce more skillful precipitation forecasts.

1. Introduction

There is great interest in predictions for the period of transition between deterministic short-term weather
forecasts, which are dominated by evolution of the initial state of the atmosphere as a dynamic fluid system
in continuous disequilibrium, and probabilistic seasonal to climate forecasts controlled by the slow manifold
of ocean heat content evolution and its feedback on the atmosphere (National Academies of Sciences,
Engineering, and Medicine, 2016). This appears to be an interval where variations in land surface states
may have their greatest contribution to predictability (Dirmeyer et al., 2015). However, the land surface lacks
operational near-real-timemonitoring akin to what is in place for the atmosphere and ocean. Thus, unrealistic
initialization of land surface states remains the norm for many weather and climate forecast systems (Vitart
et al., 2017).

This “land gap” is a missed source of prediction skill. A chain of feedback processes through both the energy
(thermodynamic) and water (hydrologic) cycles that connect variations in the land surface and atmosphere
(Santanello et al., 2018). Recently, nonoperational data sets of land surface states have grown in number,
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coverage, duration, and quality, allowing for preliminary investigations of the veracity of coupled land-
atmosphere processes in weather and climate models (Cheruy et al., 2014; Dirmeyer et al., 2016, 2018;
Levine et al., 2016; Trigo et al., 2015; Williams et al., 2016; Zeng & Yuan, 2018). These studies are beginning
to suggest where things may be going amiss in coupled land-atmosphere model systems, which previously
could undergo only very limited validation.

In the case of predictability derived from slowly varying (with respect to the atmosphere) land surface states,
the baseline situation is some form of unrepresentative land surface initialization, such as from a climatolo-
gical state (no interannual variability) or states that are effectively random with regard to the actual initial
state of soil moisture and other land surface quantities. The second Global Land-Atmosphere Coupling
Experiment (GLACE-2; Koster et al., 2010, 2011) was an initial multimodel attempt to quantify the impact of
realistic land surface initialization on subseasonal forecasts. Among the 12 participating models, one third
showed significant improvement in retrospective forecast skill, particularly for near-surface air temperature.
However, two thirds of the models showed no improvement, suggesting there were other factors that
encumbered them from realizing skill improvements. It was also found that improvements were strongest
where a combination of high-density, high-quality observations went into producing analyses used to
generate initial land surface states and where the coupling between land and atmosphere was strong
(Koster et al., 2010, 2011). Thus, a combination of individual model properties and natural sensitivity of the
atmosphere to variations in land surface states have been found to determine the impact of land surface initi-
alization on model forecast skill.

Dirmeyer and Halder (2016, 2017) focused on one operational model, the National Centers for Environmental
Prediction Coupled Forecast System version 2 (CFSv2; Saha et al., 2014). They examined how realistic land sur-
face initialization affected skill in a range of variables, both of practical interest (e.g., near-surface temperature
and precipitation) and that lie in the chain of processes (e.g., land surface fluxes and boundary layer height)
that link land surface states to important meteorological phenomena like precipitation. The geographical
variations in skill improvement largely reflected patterns of land-atmosphere coupling strength. However,
there was a marked disconnection where improved skill was demonstrated in forecasting variations in
surface fluxes, near-surface meteorological states, and atmospheric boundary layer properties, but not in
precipitation. Perhaps due to the way precipitation processes are parameterized in CFSv2, land surface states
appear to have little impact on forecast skill, even though significant correlations are found in reanalyses
using the same basic modeling framework (Dirmeyer, 2013).

In this paper, we pursue further the potential causes of this apparent breakdown in the process chain linking
precipitation to surface and lower tropospheric properties over land. We also attempt to quantify the upper
bound of skill in CFSv2 hindcasts to evaluate predictability arising from land surface states, and establish the
fraction of harvestable skill obtained by realistic land surface initialization, which is effectively the best that
could be done in a real forecast situation. Section 2 describes the forecast model, experiment design, and
data sets used for validation. This includes a novel means of forecast construction that seamlessly bridges
the transition between weather and subseasonal time scales. Section 3 describes the duration of significant
skill, amount of harvested skill, and the sources of skill in subseasonal CFSv2 forecasts. In section 4, we follow
the process chains that are the feedback pathways from the land surface back to cloud and precipitation
changes in order to diagnose model behavior. Conclusions are presented in section 5.

2. Models and Validation Data

CFSv2 is a fully coupled global ocean-atmosphere-land model used operationally by the Climate Prediction
Center (CPC) of the National Centers for Environmental Prediction for forecasts out to 9 months, and for
experimental forecasts as part of both the Subseasonal-to-Seasonal (S2S) Prediction Project (Vitart et al.,
2017) and the Subseasonal Experiment (Kirtman et al., 2017). The components of CFSv2 as used in this experi-
ment are version 2 of the Global Forecast System (GFSv2) atmospheric model at a horizontal resolution of
approximately 0.9° (T126 spectral resolution) with 64 vertical levels and version 4 of the Modular Ocean
Model (MOM4; Griffies et al., 2004) at a horizontal resolution of 1/2°, increasing to 1/4° meridionally at the
equator and 40 vertical layers. A version of the Geophysical Fluid Dynamics Laboratory Sea Ice Simulator
(cf. Saha et al., 2010) is coupled to MOM4. Noah version 2.7.1 (Ek et al., 2003) is the land surface model
coupled to GFS, having four soil layers with interfaces at depths of 0.1, 0.4, 1.0, and 2.0 m.
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GFSv2 uses the simplified Arakawa-Schubert (SAS) convective parameterization scheme (Hong & Pan, 1996;
Pan & Wu, 1995). This scheme has long been suspected to be especially insensitive to land surface forcings
(e.g., Zhang et al., 2011). Recent studies by Bombardi et al. (2015, 2016) have examined alternatives to the
default convective triggering, including, as also examined here, an update to SAS that includes shallow
cumulus (Han & Pan, 2011) and an alternative triggering criterion that is more physically based (Tawfik &
Dirmeyer, 2014). The operational boundary layer scheme is that of Hong and Pan (1996) with an added
background vertical diffusion term for enhanced mixing near the surface in stable regimes. The boundary
layer scheme is also revised in the CFSv2 version with SAS updates, as described by Han and Pan (2011)
and Bombardi et al. (2016).

Hindcasts cover the boreal warm season, with initial dates on the first day of April, May, and June for
1982–2009. Initial states come from the corresponding reanalysis: CFSR (Saha et al., 2010). The land states
in CFSR are reset at 0000UTC each day from a parallel offline Noah simulation driven by surface meteorolo-
gical forcing from the GFS data assimilation system but with precipitation from observed global analyses (Xie
& Arkin, 1997; Xie et al., 2007) blended with 6-hourly precipitation generated by GFSv2. Land states include
soil water and ice content, soil and vegetation temperatures, and snow mass—all other land properties are
specified from fixed or seasonally varying (for vegetation) parameter sets. The CFSR Global Land Data
Assimilation framework, which is derived from the NASA Land Information System (Peters-Lidard et al.,
2007), is used to generate the 0000UTC land surface analyses at the same resolution as CFSR. The land surface
analysis is said to be “semicoupled” to the atmosphere, preventing systematic errors from atmospheric model
parameterizations from drifting water budget terms. There is no direct assimilation of land states in this
system, but daily snow water equivalent analyses are generated from the Snow Depth Analysis Model
(SNODEP) model of the Air Force Weather Agency (Kopp & Kiess, 1996) and after 1996 from the National
Oceanographic and Atmospheric Administration Interactive Multisensor Snow and Ice Mapping System
(Helfrich et al., 2007), which are blended with CFSR Global Land Data Assimilation-predicted fields each
day to produce a smooth evolution of the snowpack. More details may be found in Saha et al. (2010).

For each of the 28 years with a particular initialization date, CFSR-analyzed states are interpolated to the CFS
model resolution using code supplied as part of the model. Ensembles of 28 members are composed by
choosing land initial conditions (ICs) from each of the 28 years. Thus, one member has the initial land states
from the same year (Same-Year IC) that are consistent with the atmosphere and ocean states for that date
and year, while the other 27 have the same atmosphere and ocean ICs but initial land states from the other
27 years (Different-Year IC). Additionally, a 29th ensemble member is generated for each date and year where
the initialization is as in Same-Year IC, but soil moisture states are specified throughout the retrospective fore-
cast from the land analysis described above (Same-Year BC).

Finally, a subset of years was chosen for short 2-week simulations with 3-hourly output to test the effects of
convective triggering based on the heated condensation framework (HCF; Tawfik & Dirmeyer, 2014, Tawfik
et al., 2015a, 2015b), as described in Bombardi et al. (2016). This was done because as mentioned in
section 1, there is a breakdown in transfer of the predictability signal from land surface states from planetary
boundary layer (PBL) properties, which are clearly improved by land surface initialization, to precipitation.
Table 1 shows the configurations.

Here we describe the rationale by which comparisons between experiments may elucidate aspects of pre-
dictability arising from the land surface. The Different-Year IC cases provide, in the mean, a quantification
of skill arising from atmospheric and ocean initialization alone. Comparing the Same-Year BC case with the
set of 27 forecasts from Different-Year IC with the corresponding initial month provides an upper bound of
realizable predictability from the best possible land surface simulation. It should be noted that this is not
the absolute best that may be done, as (1) the meteorological data that are used to drive the Noah land
model are of varying quality over different places around the globe; (2) Noah is not a perfect model in
representing the evolution of land surface states; and (3) GFSv2 likewise does not perfectly represent the
atmospheric sensitivities to land surface variability. Given these limitations, Same-Year BC versus Different-
Year IC provides the maximum idealized potential skill from land states in this model configuration.
Same-Year IC versus Different-Year IC quantifies the harvested skill in actual forecast mode, as specified states
are not an option in real-time forecasting. Same-Year BC versus Same-Year IC cases provide an estimate of the
unharvested skill, noting that a perfect land forecast is not possible, so some of the unharvested skill is in
fact unharvestable.
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Validation data come from gridded observational data sources for near-surface air temperature and precipi-
tation and from reanalyses (CFSR) otherwise. The CPC global gridded daily temperature analysis has been
acquired from the National Oceanographic and Atmospheric Administration Earth System Research
Laboratory (see the Acknowledgments). The CPC unified gauge-based precipitation analysis (Chen et al.,
2008; Xie et al., 2007) provides daily gridded precipitation totals for model validation.

Daily mean model and validation data are used to estimate coupling metrics and to perform process-based
model evaluation in section 4. Validation of model forecast skill is performed on a time average over a win-
dow that varies as a function of forecast lead. This weighting takes a form based on a Poisson function (Ford
et al., 2018) such that as forecast lead times get longer, the averaging window becomes wider. The functional

form for a weighted time-average forecast Fλ of variable X at a specific lead λ days is Fλ¼ ∑Nk¼1Wλ;kXλ

∑Nk¼1Wλ;k
with

weights, where sums are totaled over all leads λ in the forecast. The Poisson function has a value at k = 0,
which corresponds to including the initial state (analysis) as part of the forecast. This is valid to do operation-
ally, but because we are concerned about the model forecast behavior, we leave out the weight for k = 0 and
renormalize the remaining weightsWλ,k, so they sum to 1. At very short leads, the forecast is heavily weighted
to the day of validation like a typical deterministic weather forecast. As the forecast lead extends beyond a
week or so, the distribution of weights spreads and flattens into a centered average with an approximately
normal distribution, as the upper limit of a Poisson distribution is a Gaussian distribution. This provides a
seamless transition to classical monthly and seasonal climate forecasts but also means that the forecast
and validation fields become smoother with lead time, progressively losing contributions from short-term
variations. It also means that the observed state for any particular validation date also varies with forecast
lead time, which introduces some complexity in, for instance, calculating climatologies for the purpose of
determining anomalies (which also vary with lead time in this approach).

3. Model Performance and Predictability

We assess skill by the anomaly correlation coefficient (ACC) calculated betweenmodel forecast and observed
(or reanalysis) fields relative to the 28-year means, with the Poisson weighting applied to forecasts at various
leads. Using this metric, we quantify the effect of the different initialization strategies in the multimonth fore-
casts, including specification of soil moisture throughout the retrospective forecast period, by assessing the
duration from the start of the forecast over which significant skill is maintained through the forecast period.
At the 95% confidence level, duration of skill is thus defined as the number of days the forecast ACC remains
above 0.374.

3.1. Duration of Skill

Our expectation is that the Different-Year IC forecast suite should have the shortest duration of skill, and
Same-Year BC cases should result in the longest duration. Specifics depend on several factors, including
the natural predictability arising from land-atmosphere coupling (which varies in space and time), the quality
of the soil moisture analysis (which is also spatially variable), and the model’s ability to represent the

Table 1
Model Experiments With CFSv2

Name Initialization
Ensemble

size
Atmosphere
and ocean ICs Land Duration Model physics

Same-Year IC 1 Apr, May, Jun: 1982–2009 1 per IC CFSR CFSR ICs ≥4 months Operational
Different-Year IC 1 Apr, May, Jun: 1982–2009 27 per IC CFSR CFSR ICs from other years ≥4 months Operational
Same-Year BC 1 Apr, May, Jun: 1982–2009 1 per IC CFSR CFSR prescribed soil moisture ≥4 months Operational
NoHCF 15 July: 1998–2010 4 per IC CFSR CFSR ICs 2 weeks New SAS and

shallow Cu
HCF 15 July: 1998–2010 4 per IC CFSR CFSR ICs 2 weeks New SAS and shallow

Cu + HCF trigger

Note. Same-Year IC, NoHCF, and HCF have land initial states from the same year as the atmosphere and ocean ICs, Different-Year IC has land initial states from all
years other than the year of the atmosphere and ocean ICs, and Same-Year BC has time-varying land states prescribed from CFSR for the same year as the atmo-
sphere and ocean ICs. CFSv2 = Coupled Forecast System version 2; IC = initial condition; HCF = heated condensation framework; NoHCF = no heated condensation
framework; CFSR = Coupled Forecast System reanalysis; SAS = simplified Arakawa-Schubert; BC = boundary condition.
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processes that link land and atmosphere. Areas with very small soil moisture variability, having a daily
standard deviation of top 10-cm volumetric soil moisture <0.005, are masked out in this analysis (mainly
over the Sahara), as are regions with permanent ice cover.

Figure 1 gives an indication of the variation in skill for 2-m air temperature from forecasts initialized at the
beginning of April, May, and June for the three different treatments of soil moisture. The color scale below
each map panel is a histogram showing the fraction of land area in each range of skill duration, with vertical
lines at the 25%, 50%, and 75% levels for visual reference. There is a general shortening of the duration of skill
as the forecast initial dates progress from April to June. The tropical maritime influence of Atlantic sea surface
temperatures on temperatures over the eastern Amazon is apparent and is strongest in April. Elsewhere, the
Poisson-weighted duration of significant skill is rarely longer than about 3 weeks, with amedian of 10–14 days
depending on month and initialization strategy. There is a lengthening of skill duration as the forecasts
progress from randomized initial land states to realistically initialized to specified soil moisture, with some
of the largest impacts along the snowmelt front at high northern latitudes and in some of the monsoon onset
regions. Maps for other validated fields are shown in the supporting information as Figures S1–S3.

Global statistics for a number of variables are summarized in Figure 2. The disparity between percentage area
improved and degraded indicates the degree to which the quality of the soil moisture fields has an impact on
forecast skill. Of course, the skill of soil moisture itself is very sensitive, but surface latent heat flux (LHF) and
sensible heat flux (SHF) are also sensitive. The positive impacts weaken somewhat but are still clear in 2-m
temperature, humidity, and height of the daytime boundary layer. Precipitation is conspicuously insensitive,
as has been noted before (cf. Dirmeyer, 2011; Dirmeyer & Halder, 2016, 2017). This result is examined further
below and motivates inclusion of the HCF and NoHCF simulations in the analysis in section 4.2.

Figure 1. Duration of significant skill (last day from initialization on the first day of indicated month when interannual anomaly correlation coefficient
significance remains better than p = 0.05) for 2-m air temperature for each of the three cases: (top row) Same-Year BC; (middle row) Same-Year IC; and (bottom
row) Different-Year IC. Color bar beneath each panel shows fraction of land mass in each category (proportional to width of color), and green vertical marks denote
quarters of total area. IC = initial condition; BC = boundary condition.
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Figure 3 illustrates the impact of the various treatments of soil moisture on
the atmosphere as a function of forecast lead. The maps at the top of the
figure show the number of days on average that the Poisson-weighted
retrospective forecasts initialized on 1 May remain statistically significant,
as was shown in the middle panel of Figure 1 for the specific case of
near-surface temperature. The panels below show the cumulative distribu-
tion function of the fraction of skillfully forecast global land area (sans
ice-covered areas or regions of very low soil moisture variability) as a func-
tion of forecast lead for the three classes of forecasts. For air temperature,
skillfully predicted area drops sharply after about a week. The improve-
ment by using realistic land surface initialization is immediate, and its
impact is greatest between 10 and 20 days. Specified soil moisture
improves skill further and extends it particularly after 2 weeks. For near-
surface humidity the peak impact of realistic land surface initialization
occurs sooner but is more pronounced. Specified soil moisture greatly
increases the area of skillful forecasts after day 5 and extending through-
out the duration of the forecast. The impact on the prediction of the depth
of the PBL is evenmore profound, being greatest between 3 and 7 days for
realistic land initialization, when the increase in skillful area reaches 30% of
global land area. However, the effect on precipitation forecasts is clear but

minimal, peaking between days 8 and 12 but increasing the area of skillful predictions by at most a few
percent of global land area.

3.2. Harvested Skill

The spatial distribution of the changes in the duration of skill for near-surface air temperature shown in
Figure 1 is presented in Figure 4. The first row shows the change from Same-Year IC to Same-Year BC, and
the middle row shows the change from Different-Year IC to Same-Year IC. Realistic initialization improves

Figure 2. Percentage of ice-free land area of improvement or degradation in
skill for the indicated variables and initialization months (A = April, M = May,
J = June; skill threshold defined as ±1.0 standard deviations of the local
interannual variability of ensemble mean skill in the Different-Year IC case).
IC = initial condition; BC = boundary condition; PBL = planetary boundary
layer.

Figure 3. Top row is as in Figure 1 for 1 May Same-Year IC for the indicated quantities; subsequent rows show the fraction of land area exhibiting significant skill as a
function of forecast lead time with Same-Year BC (blue), Same-Year ICs (green), and Different-Year ICs (red). Shaded curves show the difference between green and
red curves (tan) and between blue and green curves (pale blue). IC = initial condition; BC = boundary condition; PBL = planetary boundary layer.
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skillful forecast duration over 22–25% of land areas, while about 6% of areas show degraded skill. For tem-
perature and most other variables (quantified in Figure 2), improvements going to specified soil moisture
are more limited in area and degradations are somewhat more common.

The percentage of skill that is harvested can be estimated as the ratio of difference in the change of skill
going from Different-Year IC to Same-Year IC (realized skill) divided by the difference in the change
between the two. The bottom panels of Figure 4 show this, except that when either of those changes is
negative, the harvested skill is zero. In each month, about 30–35% of the land area sees extended duration
of skill, with about 20% seeing all the potential skill realized. It should be kept in mind that there are several
possible reasons that little or no skill is realized over so much of the globe. These include the following: (1)
the model as formulated lacks the ability to realize potential skill that is harvestable from the land ICs; (2)
the quality of the initial land states is poor; (3) there is realizable skill, but the sample size from these fore-
casts is too small to discern it; and (4) there is no inherent predictability to be realized from the land surface.
On the other side of the coin, some of the colored areas may be false positives, particularly as a result of the
limited sample size. This is most likely at high latitudes where baroclinicity and internal variability of atmo-
spheric temperature are high. Regions known from previous research to be “hotspots” of land-atmosphere
coupling during these periods are more likely to be genuine, such as over central North America, southern
and central Asia, and eastern Europe, as well as much of Africa, Australia, and South America south of the
Amazon basin. For comparison, Figures S4–S6 show the same analysis for 2-m specific humidity, PBL height,
and precipitation.

Figure 4. For forecasts initialized on the first day of the indicated months (each column), the increase in days of significant skill in 2-m air temperature between
suites of forecasts; (top row) Same-Year BC minus Same-Year IC and (middle row) Same-Year IC minus Different-Year IC. Magenta indicates a decrease in the
duration of skillful forecasts, and the zero or no-change category in gray includes all areas where the magnitude of changes are less than ±1.0 standard deviations of
the local interannual variability of ensemble mean skill in the Different-Year IC case. The bottom row shows the percentage of harvested potential predictability
(middle row divided by sum of top and middle rows). Color bar beneath each panel is as in Figure 1. IC = initial condition; BC = boundary condition.

10.1029/2018JD029103Journal of Geophysical Research: Atmospheres

DIRMEYER ET AL. 13,117



Figure 5. Fraction of ice-free land area showing significant forecast skill as a function of lead time (abscissa; days); deter-
mination of the sources of skill is described in the text. IC = initial condition.
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3.3. Impact of Initialization

The evolution over time of the impact of each initialization and boundary
condition (BC) element can be assessed. The impact of land initialization
can be estimated from the difference between the skill in retrospective
forecasts with Same-Year versus Different-Year ICs. The impact of sea sur-
face temperatures is assessed from the time average of the ensemble with
randomized land states after the impact of atmospheric initialization has
died down. We average the forecast skill from days 31 to 60 and apply that
as a constant value through the subseasonal forecasts. The atmospheric
impact is that from the Same-Year IC forecasts minus the separate land
and ocean impacts described above. Finally, the idealized upper bound
for land surface prediction skill is the difference between Same-Year BC
and Same-Year IC cases.

We average the forecast skill (ACC) of the indicated variables with Poisson
weighting in Figure 5 over North America between 30 and 49°N for each of
the first 60 days of the suite initialized on 1 May. The ordinate shows the
ACC contributed by each component. Obviously, soil moisture skill is high
when it is realistically initialized, remains high when it is specified (indi-
cated as the “land potential” above other sources), and has very little con-
tribution from atmospheric or ocean initialization. The lack of perfection
for soil moisture variables in Same-Year BC cases arises from the fact that
model output is based on averages after the completion of each model
time step when soil moisture is specified at the start of each time step;
the main deviations are in rainy areas. Atmospheric initialization is impor-
tant for temperature, humidity, and precipitation and steeply degrades
beyond weather time scales. Land initialization is of comparable impor-
tance for surface heat fluxes and PBL development as atmospheric initiali-
zation at short time scales yet persists much longer to become dominant
after the first week. The potential suggested by specified land states main-
tains high skill for surface fluxes throughout the first 2 months and also
remains a significant factor for PBL height and near-surface humidity.
Ocean initial state contributions during boreal summer are essentially nil;
since there are no separate experiments separating atmosphere and

ocean initialization, any skill at day 60 in the Different-Year IC ensemble mean is presumed to arise from
the ocean.

There is evidence that the influence of initial states in CFSv2 simulations is shorter than what one finds in nat-
ure (cf. Dirmeyer, 2011). This can be seen by comparing the lagged autocorrelation of soil moisture between
simulations and the CFSR, in which land surface states are derived by running the same Noah land surface
model uncoupled from the atmospheric model, driven by observed surface meteorology. Figure 6 provides
a consistent comparison of soil moisture memory, following the twice-removed pentad methodology of
lagged autocorrelation of Koster et al. (2003) to minimize the spurious contribution of short-term synoptic
events to apparent subseasonal memory. This reduced persistence of initial land anomalies in CFSv2 simula-
tions must originate from the atmospheric model. Figure 7 shows that lagged autocorrelations of precipita-
tion in CFSv2 are also weaker than what gridded observed precipitation products suggest. The greater “noise”
content of model precipitation leads to reduced potential impact of land surface states on forecasts. The
large discrepancy over Africa is particularly noteworthy.

4. Feedback Pathways

Given a theoretical basis for process linkages among terms in the feedback chain linking the land surface
back to the atmosphere, correlations are a handy tool to assess the strength of linkages. Among three vari-
ables, correlations can be used to deduce partial correlations (Olusegun et al., 2015; Thomas & O’Quigley,
1993), further constraining the relationships and allowing a clearer determination of genuine cause-effect

Figure 6. Comparison of the lagged autocorrelation of top 10-cm soil wet-
ness during JJA between pentad 1 and pentad 3 (mean of days 1–5 of
month versus days 11–15 of same month) for the (top) CFS reanalysis and
(bottom) CFSv2 forecasts initialized on 1 June with right land states; calcu-
lations span 1982–2009. Colors indicate significance levels; the color bar
beneath each panel indicates the fraction of land mass in each category
(proportional to width of color band). JJA = June-July-August; ACC = anomaly
correlation coefficient; CFS = Coupled Forecast System; CFSR = Coupled
Forecast System reanalysis; CFSv2 = Coupled Forecast System version 2.
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relationships from spurious ones. A thorough assessment among prognos-
tic and diagnostic model variables in the feedback pathways from land to
atmosphere is summarized here. We then pursue evidence of a possible
breakdown in the linkage between boundary layer properties and the trig-
gering of clouds and convection by examining the impact of an alternative
parameterization for convective initiation.

4.1. Partial Correlations

Many interesting features can be discerned from correlations among triads
of variables; partial correlations reveal where one variable may be suppres-
sing or enhancing correlations estimated between the other two variables.
Here we focus on those sets of variables in the atmospheric leg of land-
atmosphere coupling processes.

The first example is the set consisting of convective cloud cover (CCC),
moist static energy (MSE) calculated from 2-m states, and surface LHF.
All three of these terms tend to correlate strongly with one another over
most of the globe during June (Figure 8). Looking in detail, LHF corre-
lates positively to MSE over most locations. This indicates the direct con-
tribution of LHF to moistening the lower troposphere, increasing the λq
term. Negative values are seen primarily over Northern Hemisphere
regions that have a winter rainy season, Arctic coastal regions, and scat-
tered regions of the Southern Hemisphere. Strong positive correlations
exist over the tropics, monsoon regions, and much of the midlatitudes
of the Northern Hemisphere. The correlation between MSE and CCC is
positive nearly everywhere, with the strongest correlations over areas
including the deep tropics, southeastern Asia, much of Mexico, and the
eastern seaboard of North America. The problem of overly robust tran-
spiration over agricultural areas described by Roundy et al. (2014) is evi-
dent as the negative correlation areas between LHF and CCC over
central North America, much of eastern China, and across Europe. This
is symptomatic of an energy-limited condition at the land surface that
is probably unrealistic in this model. Otherwise, the strong positive
correlations linking LHF and CCC are again over much of the remainder
of North America, the deep tropics, and monsoon areas (although not
strong over West Africa) and in a band from northern Europe to the
Amur basin.

When we control for the effect of MSE, nearly everywhere, the correlation
between LHF and CCC drops. The impact is strongest over the tropics,
Southeast Asia, monsoonal Mexico, and South Asia, and much of eastern
North America, with a broad area of moderate impact over central and
eastern Europe. The implication is that in these regions, there is a pathway

through MSE by which surface LHF positively impacts convection. It is noteworthy that the regions of North
America correspond well to the areas of strong triggering feedback strength found by Findell et al. (2011).
The other side of the coin is that locations of strong positive correlation between LHF and CCC not reduced
by controlling for MSE must be related for other reasons. For example, over the western United States it is
more likely that convective precipitation in this generally dry region contributes to increased evaporation,
and the feedback pathway is not in place.

Figure 9 shows the global relationships in the form of scatter diagrams. The strong positive correlation
among the three terms is evident as most points lie in the upper right quadrant and are colored red. The scat-
ter is then colored by values of two different aridity indices, one based on precipitation and one on evapo-
transpiration (ET). Generally humid regions correspond to those where LHF correlates positively to MSE. In
arid regions, the correlations in both links are generally weak. Where ET approaches its potential rate, there

Figure 7. As in Figure 6 for precipitation: (top) multisource weighted-ensem-
ble precipitation (MSWEP); (middle) Climate Prediction Center (CPC) Unified,
and (bottom) Coupled Forecast System version 2 (CFSv2) forecasts.
ACC = anomaly correlation coefficient.
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tends to be no correlation between MSE and CCC except when the relationship between LHF and MSE is
strong and positive.

The second example is a dry feedback pathway from SHF to PBL height to CCC. SHF is the process by which
the daytime boundary layer heats, fueling its growth. As a result, SHF correlates strongly with the height
of the PBL over most of the globe (Figure 10), except some desert areas, Southern Hemisphere (winter) mid-
latitudes, and the regions where crops are exhibiting too much ET, which all have negative correlations. CCC
is almost universally negatively correlated with both SHF and PBL in CFSv2. This is contrary to the notion of a
dry-soil advantage in semiarid and arid regions, where deep boundary layers are most conducive to trigger-
ing clouds and convection (Findell & Eltahir, 2003; Roundy et al., 2013; Taylor et al., 2012). This inability to
represent convection over hot dry ground is a characteristic of the convective parameterizations in many
atmospheric models (e.g., Gentine et al., 2013; Hohenegger & Stevens, 2013; Zhang et al., 2017).

Setting that problem aside and looking at humid summertime and tropical regimes, the anticorrelation
between PBL and CCC makes sense as a reflection of the paramount role of moisture—a moist atmosphere
will have a lower cloud base, which acts to cap the depth of the PBL. Clouds also suppress surface sensible
heating by reducing downward shortwave radiation, which acts as another factor in the negative correlation,
exemplified directly in the rightmost column, and explains the apparent role of CCC in enhancing the positive
correlations between SHF and PBL height when we account for the cross-correlations among these three
terms. Meanwhile, much of the anticorrelation between SHF and CCC in the tropics and monsoon regions
is directly attributable to the pathway through boundary layer growth.

Figure 8. Forecasts initialized with right land states on 1 June 1982–2009, temporal correlations of daily means among surface latent heat flux, 2-m moist static
energy, and convective cloud cover as indicated in the titles of each panel: (top row) simple correlations, (middle row) partial correlations controlling for the indi-
cated variable, and (bottom row) the difference. Color histograms under each panel show the proportion of land area in each interval.

10.1029/2018JD029103Journal of Geophysical Research: Atmospheres

DIRMEYER ET AL. 13,121



4.2. Convective Parameterization

Because the breakdown in the linkage along the land-atmosphere feedback pathway appears to occur at pre-
cipitation, we examine simulations from Bombardi et al. (2016) that employed the convective trigger based

Figure 9. Information in the top left and top center panels of Figure 8 presented as a scatter diagram (each mark is one
land model grid cell), colored by three quantities as indicated in the color bars. (left) Correlation shown in the top left panel
of Figure 8, (middle) aridity defined as ratio of net radiation to precipitation (expressed as energy by multiplying by the
latent heat of condensation), and (right) aridity expressed as ratio of evapotranspiration (ET) to potential evapotranspira-
tion (PET).

Figure 10. As in Figure 8 for correlations among surface sensible heat flux, boundary layer height, and convective cloud cover.
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on the HCF of Tawfik and Dirmeyer (2014). The main difference is that HCF permits convection when there is
sufficient heating for a well-mixed boundary layer to achieve saturation at its top, based on the evolving
profiles of temperature and humidity. This relates triggering to the ability to overcome convective inhibition,
which is in contrast to the convective parameterizations in CFSv2, wherein a necessary condition for both
shallow and deep convection is that the level of free convection be within 120–180 hPa above the level of

Figure 11. (top) Four pairs of panels showing the temporal correlations between variables indicated and (bottom) the
change in correlation when the heated condensation framework (HCF) convective triggering mechanism is implemen-
ted. The top panel in each pair is not identical to the corresponding panels of Figures 8 and 10 because these forecasts were
initialized on 15 July for a different set of years.
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maximum MSE. This default condition is replaced by the HCF condition in the HCF simulations, allowing
a more realistic buildup of energy; other aspects of the shallow and deep convective
parameterizations are unchanged.

Figure 11 shows that the impact of the HCF-based convective triggering in coupling land surface fluxes to
convective cloud formation is mainly found in semiarid regions. Top panels show the water cycle pathway,
linking surface LHF to MSE to convective cloud. Both of these links are manifested as mostly positive correla-
tions except in the most arid regions and parts of the Arctic. Changes from the control case tend to expand
and enhance these positive linkages into more arid locations like the Sahel, southwestern North America, and
the transition areas between the central Asian deserts and Siberia.

The thermal pathway links surface SHF to growth of the boundary layer to cloud formation. The first link is
mostly positive except over deserts, as with the water cycle links. However, there is generally an inverse rela-
tionship between PBL height and convective cloud formation, reflecting the fact that more humid air has a
lower lifting condensation level that can be reached by a shallower boundary layer. Again, the greatest
impact of the HCF triggering is over the semiarid regions, this time extending toward eastern Europe and
appearing in some Southern Hemisphere dry-season regions.

In both pathways, HCF serves to bolster the linkages between land surface fluxes and convection, although
the impacts are not widespread. Skewness is apparent in the histograms for each of the changes in correlation.
To assess their significance, for each coupling pair of variables, we performed a Monte Carlo sampling from
within the 104 HCF and NoHCF simulations dividing ensemble members randomly into two pairs of 52 and
calculating the difference histograms 10,000 times with the same bins as in Figure 11. We then average them
together and average across 0 to produce a symmetric mean distribution. The distribution of correlation
changes for each of the 10,000 cases is compared to the mean using relative entropy (DelSole & Tippett,
2007) as a measure of the difference in probability distributions. The distributions shown in Figure 11 are
also compared to themean randomdistribution. In each case, the distributions in Figure 11 due to the change
in convective triggering is an extreme outlier, and the magnitude of relative entropy ranges from 2× (for LHF
to MSE) to >10× (PBL height to convective cloud) larger than the largest attained by random sampling.

Globally, the greatest differences in spatially averaged correlations and spatial variability of differences over
land are found between convection and convective available potential energy (CAPE, not shown). Dominant
positive correlations across most of the continental areas become even stronger with the HCF trigger.
Precipitation also becomes less correlated with CCC, as the model is less prone to frequent light rainfall.
Other studies have shown that convective parameterizations tend to trigger clouds and convection too early
in the day, cause frequent light rainfall, and generally performmore poorly than models at high enough reso-
lution to permit clouds and convection directly (Dirmeyer et al., 2012; Hohenegger & Stevens, 2013;
Kooperman et al., 2016; Pritchard & Somerville, 2009).

5. Discussion and Conclusions

We quantify as a function of space (across ice-free land areas of the globe) and time (as a function of the fore-
cast lead time out to 60 days) the impact of land surface states on forecast skill in CFSv2. The three different
treatments of land surface states allow us to estimate different levels of land surface impact. A maximum, albeit
idealized, potential predictability of this model is determined by specifying the best possible analysis of land
states throughout the forecast periods; best in that they are consistent coming from the reanalysis of the same
model system featuring a parallel land surface analysis driven by observedmeteorological forcing. This mode is
a land-surface analog to Atmospheric Model Inter-comparison Project (AMIP)-type retrospective forecasts with
specified observed sea surface temperatures. By comparing suites of forecasts with realistic land initialization in
a true forecast mode (Same-Year IC) to randomized (Different-Year IC) land surface initialization, we can see the
impact of evolving land surface states on forecast skill. Comparison of the two allows for assessment of the har-
vested predictability, realizing that there may be more harvestable predictability than is evident even with spe-
cified land states that is currently unrealizable due to model errors, biases, and imperfect monitoring and
collection of data (especially regarding land surface states) assimilated in reanalyses and operational analyses.

We confirm with these experiments a long-held conjecture that the impact of the land surface on atmo-
spheric forecast skill peaks in the interval between the short-term deterministic range of weather forecasts
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largely determined by the initial state of the atmosphere and the realm of probabilistic seasonal forecasts
(months and longer) where slowly evolving ocean states have a dominant contribution. Figure 3 shows that
land surface impact on forecast skill peaks in the subseasonal range between about 5 days and 2 weeks, with
a long tail of potential impact stretching out to 2 months or more depending on the validated variable and
region. Thus, the land surface is shown to have key potential value in improving S2S forecasts. Recognition of
the role of the land surface in predictions at S2S time scales has grown since GLACE-2; the land feedbacks
component of the Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) revisits
the topic of land surface contributions to prediction skill with a diagnostically focused multimodel commu-
nity experiment (Van den Hurk et al., 2016).

This study uses a single climate model; as no model is perfect, it is possible that the full impact of the land
surface on S2S time scales is being underestimated. A particular feature of the atmospheric component of
CFSv2, also noted elsewhere (Abhik et al., 2017; Bombardi et al., 2015, 2016; Dirmeyer, 2013; Dirmeyer
et al., 2018; Mo et al., 2012; Weber & Mass, 2017), is the unrealistic nature of simulated precipitation and its
weak connection to land-atmosphere interactions. We see robust connections in CFSv2 between soil moist-
ure, surface fluxes, and atmospheric properties both near the surface and through the daytime boundary
layer. However, there is a sharp loss of signal in the last step from boundary layer properties to precipitation.
Replacing the convective triggering parameterization, based on an arbitrary empirical relationship between
the level of free convection and peak MSE, with one based on heating necessary to induce convective
instability in the atmospheric profile, increases the linkage between land states and precipitation.
However, the impact is largely confined to semiarid regions—the change in the parametrization is relatively
minor compared to other convective criteria that were not altered.

We also see the effect of the change made to the root profiles between production of the CFS reanalysis and
reforecasts to ameliorate surface warm biases over central North America. As noted previously (Dirmeyer &
Halder, 2017; Roundy et al., 2014), this causes a wet surface bias over agricultural areas, especially noticeable
over the midwestern United States, with excessive ET, very shallow boundary layers, and erroneously weak
land-atmosphere coupling (Dirmeyer et al., 2018). Furthermore, snowpack and snowmelt biases in this model
have some effect in April and May at high latitudes (Halder & Dirmeyer, 2017).

Despite these problems, our experiments suggest that CFSv2 is realizing most or all of the harvestable pre-
dictability from land surface states over some areas of the globe. There are also several unrealized sources
of potential predictability. Errors in initial soil moisture states are likely in areas where precipitation is poorly
observed (Koster et al., 2011; Oki et al., 1999). Land data assimilation, particularly utilizing remotely sensed soil
moisture that has global coverage, has great potential to improve land surface initialization. Uncertainties
and errors in parameter choices and model structure also contribute overall errors (Nearing et al., 2016),
undoubtedly originating in both the land surface and atmospheric components of CFSv2. It must be
recognized that all weather and climate models have problems in coupled land-atmosphere behavior that
remain largely undiagnosed, due to two factors. One is the general lack of observational data needed to diag-
nose coupled land-atmosphere process errors in models (Dirmeyer et al., 2015). The other is the tradition of
“stovepipe” model development wherein atmosphere and land surface models are developed in isolation
from each other and at best lightly tuned after coupling. Pursuit of coupled, rather than piecemeal, land-
atmosphere model development could speed improvements and help realize the unharvested predictability
at S2S time scales.
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